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SUMMARY  

This paper presents an overview of the concepts of feeder design in relation to 
the loading of bulk solids onto belt conveyors. The basic design features of belt 
and apron feeders is presented. The need for feeders and mass-flow hoppers to 
be designed as an integral unit to promote uniform feed is emphasised. The 
essential requirement is to promote uniform feed with the whole of the 
hopper/feeder interface active. The methods for determining feeder loads and 
corresponding drive torques and powers are discussed. Procedures for 
controlling feeder loads during start-up and running are explained. The 
estimation of loads on feeders used in conjunction with funnel-flow, expanded-
flow bins and gravity reclaim stockpiles is discussed. The design of feed chutes 
for directing the flow of bulk solids from the feeder discharge onto conveyor belts 
is briefly reviewed.  

1. INTRODUCTION  

Feeders have an important function in belt conveying operations. Their function 
is to control the gravity flow of bulk solids from storage, such as from bins or 
stockpiles, and to provide a uniform feedrate to the receiving belt conveyor. 
While there are several types of feeders commonly used, it is important that they 
be chosen to suit the particular bulk solid and to provide the range of feed rates 
required. It is also important that feeders be used in conjunction with mass-flow 
hoppers to ensure both reliable flow and good control over the feeder loads and 
drive powers. Correct interfacing of feeders and hoppers is essential if 
performance objectives such uniform draw of material over the whole of the 
hopper outlet is to be achieved.   

For uniform draw with a fully active hopper outlet, the capacity of the feeder must 
progressively increase in the direction of feed. In the case of a screw feeder, for 
example, this is achieved by using combinations of variable pitch, screw and core 
or shaft diameter. In the case of belt and apron feeders, a tapered opening is 
required as illustrated in Figure 1. The triangular skirtplates in the hopper bottom 
are an effective way to achieve the required taper. The gate on the front of the 
feeder is a flow trimming device and not a flow rate controller. The height of the 
gate is adjusted to give the required release angle and to achieve uniform draw 
along the slot. Once the gate is correctly adjusted, it should be fixed in position; 
flow rate is then controlled by varying the speed of the feeder. An alternative 
arrangement is to use a diverging front skirt or brow as illustrated in Figure 1. 
This has the advantage of relieving the pressure at the feed end during discharge 
and forward flow.  
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Figure 1: Belt or Apron Feeder  

In the case of vibratory feeders, there is a tendency for feed to occur 
preferentially from the front. To overcome this problem, it is recommended that 
the slope angle of the front face of the hopper be increased by 50 to 80 as 
illustrated in Figure 2. Alternatively, the lining surface of the front face in the 
region of the outlet may selected so as to have a higher friction angle than the 
other faces. Apart from providing flexible support, the springs in the support rods 
or cables assist in controlling feeder loads. This is discussed later.  

 

Figure 2: Vibratory Feeder  

2. FEEDER LOADS DURING FILLING AND FLOW  

2.1 General Remarks  

From a design point of view, it is important to be able to determine the loads 
acting on feeders in hopper/feeder combinations and the corresponding power 
requirements. Figure 3 illustrates the loads acting in a hopper and feeder.   

 

Figure 3. Feeder Loads in Hopper/Feeder Combination  

Feeder loads are influenced by several factors including  

• Hopper/feeder flow pattern  
• Flow properties of the bulk solid  
• The chosen hopper shape for mass-flow. That is, whether conical, plane-

flow or transition (combination of conical and plane-flow).  
• Wall friction characteristics between the bulk solid and hopper walls and 

skirtplates  
• The type of feeder and its geometrical proportions  
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• The stress field established in the hopper. That is the initial filling 
condition when the hop-per is filled from the empty condition and the flow 
condition when discharge has occurred.   

For the initial filling condition in the case of a mass-flow hopper, the load is 
influenced by the surcharge pressure ps acting at the hopper transition. For the 
flow condition, the load on the feeder is virtually independent of the surcharge 
head. This gives rise to a significant decrease in the feeder load Q once flow has 
been initiated.  

Reisner [1] indicated that the initial load on a feeder may be 2 to 4 times the flow 
load. However, research has shown that variations between the initial and flow 
loads can be much greater than those indicated by Reisner.  

2.2  Measurement of Feeder Loads   

Experiments were conducted by Roberts et al [2] and Manjunath et al [3] using a 
laboratory scale plane-flow bin and belt feeder. The belt feeder was suspended 
by vertical wires attached to load cells to permit measurement of the feeder 
loads. The vertical wires were adjustable to permit setting the feeder to a chosen 
inclination or declination angle. Horizontal restraining wires, also attached to load 
cells, permitted measurement of the tangential force to move the bulk solid by 
means of the belt. The feeder was driven by a variable speed hydraulic motor, 
the motor being mounted for torque measurement.  

A typical set of feeder load results for the filling and discharge conditions is 
shown in Figure 4. The graphs show the vertical initial and flow loads and the 
corresponding tangential loads. The variation between the initial filling and flow 
loads is quite significant, the flow load being only 18% of the initial load.  

 

Figure 4. Feeder loads for Belt Feeder Test Rig 
Bin: D = 0.53 m. B = 0.06 m; α = 15°; L = 0.69 m& H = 0.5 m 

Material: Plastic Pellets δ = 42°; ø = 20°; ρ = 0.485 t/m3  

It is also important to note that once flow has been initiated and then the feeder is 
stopped while the bin is still full, the load on the feeder does not revert to the 
original initial load. Rather, the load remains essentially at the flow load Qf. The 
results of Figure 4 indicates a small increase in the load shown by the 'dotted' 
graph., this being no doubt due to a redistribution of the stress field in the region 
of the hopper outlet. Often, even this small increase does not occur.  

The reduction in the tangential load from the initial value Fi to the flow value Ff in 
this case is about 60%. It is also noted that Fi/Qi = 0.27 and Ff/ Qf = 0.5.  

3. STRESS FIELDS IN HOPPER - INFLUENCE ON FEEDER LOADS  
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3.1 Pressures generated in a Mass-Flow Bin  

In hopper and feeder combinations, the loads acting on the feeders are related to 
the pressures acting in the mass-flow hoppers. The vertical pressure pvo at the 
outlet is of particular interest since this pressure directly influences the load on 
the feeder. This is illustrated in Figure 5.   

 

Figure 5. Pressures Acting in Hopper and Feeder  

The stress fields are depicted in Figure 6 where pn represents the normal wall 
pressure and pv the average vertical pressure at the cross-section considered.  

Under initial filling conditions, a peaked stress field is generated throughout the 
entire bin as illustrated in Figure 6 (a). Once flow is initiated, an arched stress 
field is generated in the hopper and a much greater proportion of the bulk solid 
load is supported by the upper section of the hopper walls. Consequently, the 
load acting on the feeder substantially reduces.  

The variation of feeder loads illustrated in Figure 4 is explained by the change in 
pressure pvo from the 'initial filling' to the 'flow' case by reference to Figure 6. It is 
noted that the pressures pvo depicted in Figure 6 are influenced by a re-
distribution of the stress field at the hopper outlet in the region of the feeder. It is 
also noted that the arched stress field in the hopper, once generated, is quite 
stable and is retained even when the feeder is stopped. This explains why when 
flow is initiated and then the feeder is stopped while the bin is still full, the arched 
stress field is retained and the load on the feeder remains at the reduced value.  

3.2 Expressions for Pressures Acting in Mass-Flow Hopper  

Since the design equations for feeder loads are related to the expressions for bin 
wall loads, notably the pressures generated in hoppers, the basic equations for 
mass-flow hoppers are briefly reviewed.  

(a) General Expression  

The vertical pressure  

   

hh - zh γhh hh - zh   pvh = γ[ 
j - 1 

] + [(ps - (j-1)
)(

hh 
)j]           (1)

pnf = khf pvf                   (2)  
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tanøw where j = (m+1) {kh (1 +
tanα

) -1}          (3)

  

α = hopper half angle 
ps = surcharge pressure at datum transition
hh  = distance from apex to transition 
γ = bulk specific weight 
øw = wall friction angle 
m = symmetry factor 
  = 1 for axi-symmetric or conical hoppers
  = 0 for plane-flow hoppers 

 

Figure 6. Pressures Acting in Mass-Flow Bin  

(b) Hopper Pressures - Initial Filling Case  

For the initial filling case, the minimum value Of kh (that is, khi), is used. For this 
case, j = 0 and the vertical pressure pvhi is hydrostatic. From equation (1), with j = 
0,  

pvhi = ps + γzh                    (4)  

and the normal pressure pnhi is   

pnhi = khi pvhi = khi (ps + γzh)                (5)  

and from (3) with j = 0,  

   

       tanα        khi = tan øw + tanα
                (6)

(c) Hopper Pressures - Flow Case  
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Equations (1) and (2) apply. That is   

   

hh - zh γhh hh - zh   pvhf = γ[ 
j - 1 

] + [(ps - (j-1)
)(

hh 
)j]           (7)

pnhi = khi pvhf                   (8)  

   

tanøw where j = (m+1) {khf (1 +
tanα

) -1}          (9)

  

      2(1 + sinδcos2η)       khf = 
2 - sinδ(1 + cos2(α + η))

                       (10)

 

Figure 7. Stress or Pressure Conditions in Hopper during Flow  

The stress or pressure conditions acting in the flow channel and corresponding 
Mohr circle representation are shown in Figure 7. The stress ratio khf relates the 
average vertical stress across the horizontal 'slice' to the normal pressure at the 
wall. As shown in Ref.[5], recommended value of khf is given by.  

4. DETERMINATION OF FEEDER LOADS - DESIGN EQUATIONS  

4.1 General Case  

Consider the mass-flow hopper and feeder of Figure 12. The design equations 
used to determine the feeder loads are summarised below:  
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Figure 8 - Loads on Feeder  

The loads acting on the feeder and corresponding power requirements vary 
according to the stress condition in the stored bulk mass.  

The general expression for the load Q is  

Q = pvo Ao                  (11)  

   

Where pvo = Vertical pressure on feeder surface
  Ao = Area of hopper outlet  

For convenience, following the procedure established by Arnold et al [4], the load 
may be expressed in terms of a non-dimensional surcharge factor as follows:   

Q = q γ B(2+m) L(1+m)              (12)  

  

Where q  = non-dimensional surcharge factor  
  γ  = ρ g = bulk specific weight  
  ρ = bulk density  
  L = length of slotted opening  
  B = width of slot or diameter of circular opening 
  m = hopper symmetry factor  
    m = 0 for plane-flow hopper  
    m = 1 for conical hopper   

It follows from (11) and (12) that  

   

π pvo  q = (
4

)m

g B
                       (13)
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Based on an analysis of the pressure distribution in the hopper, it may be shown 
that the vertical pressure acting at the hopper outlet is  

   

     γB           γD     B   pvo = 
2(j-1)tanα

+ [ ps - 2(j-1)tanα
][

D
]j            (14)

where ps = surcharge pressure acting at the transition   

The exponent 'j' in equation (20) is given by   

   

tanøw j = (m + 1) [kh (1 + 
tanα

 - 1]               (15)

where kh is the ratio of normal pressure at the hopper wall to the corresponding 
average vertical pressure.  

From (19) and (20) a general expression for the non-dimensional surcharge 
pressure may be obtained. That is,   

   

π       1      ps       1      B     q = ( 
4 

)m{ 
2(j-1)tanα

+[
γD

-
2(j-1)tanα

][
D

]j-1}      (16)

Two cases are of importance, the initial filling condition and the flow condition.  

4.2 Initial Filling Condition  

This applies when the feed bin is initially empty and then filled while the feeder is 
not operating. Research has shown that the initial filling loads can vary 
substantially according to such factors as   

i. Rate of filling and height of drop of solids as may produce impact 
effects.   

ii. Uniformity of filling over the length and breadth of the feed bin; 
asymmetric loading will produce a non-uniform pressure distribution 
along the feeder.   

iii. Clearance between the hopper bottom and feeder surface.   
iv. Degree of compressibility of bulk solid   
v. Rigidity of feeder surface  

For the initial filling condition, the stress field in the hopper is peaked; that is, the 
major principal stress is almost vertical at any location. The determination of the 
initial surcharge factor qi can be made by using an appropriate value of 'j' in 
equation (16). The following cases are considered:  
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a. For a totally incompressible bulk solid and a rigid feeder with minimum 
clearance, the upper bound value of qi may be approached. The upper 
bound value corresponds to j = 0 for which the vertical pressure in the 
hopper is 'hydrostatic'. In this case the ratio of normal pressure to vertical 
pressure is given by  

   

     tanα       khi =
tanα + tanøw

               (17)

With j = 0, the upper bound value of qi is obtained from equation (6) 
which becomes   

   

π    1   D 2ps tanα    qi = ( 
4 

)m{
2tanα

[
B

+
γB 

- 1]}            (18)

This equation corresponds to the pressure at the outlet being 
'hydrostatic'.   

b. For a very incompressible bulk solid and a stiff feeder, j = 0.1  
c. For a very compressible bulk solid and a flexibly supported feeder, j = 

0.9   
d. For a moderately compressible bulk solid stored above a flexibly 

supported feeder, j = 0.45   

While the value of qi may be determined using an appropriate value of j in 
equation (22), from a practical point of view, it has been established that a 
satisfactory prediction of qi may be obtained from  

   

π    1   D 2ps tanα   qi = ( 
4 

)m{ 
2tanα

[
B

+
γD 

-1]}                 (19)

The vertical load Qi is given by  

Qi = qi ρ g L(1-m) B(2+m)                       (20)  

4.3 Flow Condition  

Once flow has been initiated, an arched stress field is set up in the hopper. Even 
if the feeder is started and then stopped, the arched stress field in the hopper is 
preserved. In this case, the hopper is able to provide greater wall support and the 
load on the feeder, together with the corresponding drive power, is significantly 
reduced. While equation (16) may be applied by choosing an appropriate value 
of 'j', some difficulty arises due to the redistribution of stress that occurs at the 
hopper/feeder interface. A well established procedure, based on Jenike's radial 
stress theory has been presented in Refs.[2,3,5]. This procedure has some 
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shortcomings inasmuch as the influence of the surcharge pressure ps, although 
small, is ignored and while the hopper half-angle is included in the analysis, the 
aspect ratio B/D of the hopper is not taken into account. An alternative approach 
is now presented.  

The redistribution of the stress field in the clearance space between the hopper 
and the feeder is illustrated in Figure 9.   

 

Figure 9. Stress Fields at Hopper and Feeder Interface  

In this case the stress field in the shear zone is assumed to be peaked with the 
vertical design pressure pvod being equal to the major consolidation pressure σ1 
determined by assuming that the average vertical pressure pvhf at the hopper 
outlet is equal to mean principal consolidation pressure. This gives rise to the 
pressure multiplier kFm defined as follows:  

kFm = (m + 1) (1 + sinδ)                      (21)  

m = 0 for plane-flow 
m = 1 for axi-symmetric or conical hoppers   

Hence  

pvod = kFm pvhf                (22)  

pvhfo is given by equation (14). Hence  

   

      γB            γD      B   pvod = kFm { 
2(j - 1)tanα

+ [ ps - 2(j - 1)tanα
][

D
]j}              (23) 

where  

tanøw j = (m + 1) { khf ( 1 +
tanα

) - 1 }                   (24)

and  

      2 (1 + sinδ cos2η)       khf = 
2 - (sinδ (1 + cos2(α + η))

                 (25)

The force acting at the outlet and is  
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Qf = Pvod Ao                (26)  

where Ao = Area of outlet = (π/4)m D(m+1) L(1-m)             (27)  

Alternatively, the non-dimensional surcharge factor qf is obtained from equation 
(13)  

   

p pvod  qf = (
4

)m

γB
                (28)

Combining (23) and (28)  

   

π        1       ps        1       B     q - kFm ( 
4 

)  { 
2(j - 1)tanα

+ [
γD

-
2(j - 1)tanα

][
D

]j-1}              (29) 

Qf = qf ρ g L(1-m) B(2+m)                       (30)  

4.4 Experimental Results   

Figure 10 shows a comparison between the predicted and experimental results 
for the feeder test rig described in Refs.[2,3]. The flow load has been adjusted to 
allow for the weight of bulk material in the shear and extended skirtplate zones. 
In general, the results are in reasonable agreement.  

 

Figure 10: Comparison between Predicted and Experimental Results - Feeder 
Test Rig Bulk Material: Plastic Pellets  

5. BELT AND APRON FEEDERS   

5.1 Shear Zone   

The geometry of the shear zone of a belt or apron feeder is quite difficult to 
predict precisely. According to Schulze and Schwedes [6], the shear zone may 
be divided into three regions as illustrated in Figure 11. In their work the lengths 
of the regions were predicted on the basis of the 'Coulomb principle of smallest 
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safety' which assumes that the rupture surface in a consolidated bulk solid will 
develop in such a way that the bearing capacity of the solid is minimised.  

 

Figure 11. Shear Zones in Belt Feeder - Schulze et al [6]  

It is also noted that there will be a velocity gradient developed in the shear zone, 
as indicated in Figure 12. The characteristic shape of this profile depends on the 
properties of the bulk solid, the feeder speed and the geometry of the 
hopper/feeder interface. In the extended skirtplate zone the velocity distribution is 
more uniform.   

 

Figure 12. Velocity Profile in Shear Zone  

The 'idealised' shear zone and velocity profiles are shown in Figure 13. For 
simplicity, it is reasonable to assume that the shear zone is linear and is defined 
by the release angle y. It is also assumed that in the shear zone the velocity 
profile is linear as illustrated in Figure 13. In the extended skirtplate zone, the 
velocity profile is substantially constant with the bulk solid moving at a average 
velocity equal to the belt velocity. Since the average bulk solid velocity in the 
hopper skirtplate zone is less than the average velocity in the extended skirtplate 
zone, there will be a 'vena contracta' effect with the bed depth Ye less than the 
bed depth H at the exit end of the feeder.  

5.2 Release Angle  

The height of the opening at the feed end should be sufficient to give an 
acceptable release angle W for controlled draw-down in the hopper and to avoid 
slip between the bulk solid and the belt or apron surface. At the same time the 
bed depth in the skirtplate zone should be selected to ensure uniform feed. It is 
recommend that  

   

H 

B
≤ 1.0                (31)
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Figure 13. Belt/Apron Feeder - Assumed Shear Zone and Velocity Profile  

Referring to Figure 13,  

   

   L    H = 
cosθ

tan ψ + yc                 (32)

or  

H L tan ψ yc    

B 
= 

B cos θ
+

B
                       (33)

and the average ratio yc/B is  

yh 1 L tan ψ yc     

B 
= 

2 B cos θ
+

B
                          (34)

Normall H/B ≤ 1.0. For a given H/B and L/B, the release angle is obtained from 
(34). That is,  

   

H yc  

B
-

B
______

L 

ψ = tan-1 [

B 

cos θ ]                      (35)

The release angles as a functions of the ratios H/B for various L/B ratios are 
given in Figure 14.  
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Figure 14. Variation of Release Angle with H/B and L/B  

As shown in Section 7, the release angle has a significant effect on the potential 
for slip to occur between the bulk solid in contact with the belt. The larger the 
release angle, the less likely will slip occur.  

5.3 Distribution of Throughput in Feeder  

Referring to Figure 12, the mass throughput of the feeder will vary along the feed 
zone. At any location x, the throughput Qm(x) is given by  

Qm(x) = ρ A(x) vb ηv(x)            (36)  

  

where A(x)  = Cross-sectional area at location x 
  vb  = Velocity of the belt or apron  
  ρ  = Bulk density (assumed constant) 
  ηv(x) = Volumetric efficiency at location x 

 
From the geometry of Figure 13,  

A(x) = (Bi + 2 x tan λ)(yc + x tan ψ)            (37)  

The volumetric efficiency ηv(x) relates the actual throughput to the maximum 
theoretical throughput which is the bulk solid moving forward with the belt or 
apron without slip. Thus ηv(x) is given by  

   

vf(x) ηv(x) =
vb 

                     (38)

where      vf(x) = Average feed velocity at location x.  

   

v vf(x) = (1 + C)
2

                (39)
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v = velocity of bulk solid at belt surface   

Assuming that there is no slip at the belt surface, then v = vb. Hence (50) 
becomes   

   

vb vf(x) = (1 + C)
2

                (40)

Referring to Figure 12, it is assumed that  

   

x + xo C = 1 - (1 - Ce)( Lh + xo
)                  (41)

  

(1 - Ce) xo (1 - Ce) x  ηv(x) = 1 - 
2(Lh + xo)

-
2(Lh + xo)

                    (42)

Substituting for A(x) and ηv(x) in equation (47)  

Qm(x) = ρ vb [-a2 a4 x³ + (a2 a3 - a1 a4) x² + (a1 a3 - a0 a4)] + ∆Qmi              (43)  

  

where a0 = yc Bi 
  a1 = 2 yc tan λ + Bi tan ψ 
  a2 = 2 tan λ tan ψ 
  (1 - Ce) xo 

  
a3 = 1 -

2 (Lh + xo)
  (1 - Ce) 

  
a4 = 

2 (Lh + xo)
     yc    

  
xo = 

tan ψ 

                      (44)

  ∆Qmi = ρ Bi yc ηvi vb = Initial throughput

 
5.4 Feeder Throughput  

At the discharge or feed end of the hopper the throughput is given by  

Qm = ρ B H vb ηv(L)                (45)  
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1 + Ce Where ηv(L) =
2 

                 (46)

ηv(L) = volumetric efficiency at exit  

Also, Qm = ρe B ye vb                                         (47)  

where ρe = bulk density in extended zone  

It is noted that ρe < ρ since the consolidation pressures are lower in the extended 
zone  

   

1 + Ce ρ  Hence ye = H(
2 

)(
ρe

)                  (48)

The throughput is given by  

Qm = ρe B ye vb                                         (49)  

5.5 Hopper Draw-Down  

For convenience, the distribution of the throughput along the feeder, given by 
equation (43), may be expressed in non-dimensional form as  

   

Bi yc 
ηvi

 Qm(x)  1   

 NQ(x) 
= ρ vb B 

H 

= 
H 
B 

[-a2 a4 x³ + (a2 a3 - a1 a4) x² + (a1 a3 - a0 a4) x + 
a0 a3] + B H 

ηvL 

           
(50) 

NQ(x) may be normalised by choosing H = B = 1  

Hence  

   

Qm(x) Bi yc ηvi  NQ(x) = 
ρ vb 

= -a2 a4 x³ + (a2 a3 - a1 a4) x² + (a1 a3 - a0 a4) x + a0 a3 + ηvL 
           (51)

The draw-down characteristics in the hopper are governed by the gradient of the 
throughput  

   

  Qm'(x) = dQm(x) 
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  dx 
      

Qm'(x) Or NQ'(x) =
ρ B H vb

Again normalising with H = B = 1,  

Qm'(x) = ρ vb [-3 a2 a4 x² + 2 (a2 a3 - a1 a4) x + (a1 a3 - a0 a4)]                   (52)  

For best performance, uniform draw-down in the hopper is required. For this to 
be achieved,  

   

dQm(x) Qm'(x) = 
dx 

 constant                        (53)

or  

NQ'(x) = -3 a2 a4 x² + 2 (a2 a3 - a1 a4) x + (a1 a3 - a0 a4)                   (54)  

5.6 Optimum Hopper Geometry  

Since equation (54) is second order, it is not possible, theoretically, to achieve 
uniform draw down. However, it is possible to achieve approximately constant 
draw-down by carefully selecting the feeder geometry. To do this, the 
recommended approach is to choose the feeder geometry so that the maximum 
value of NQ'(x) occurs at the center of the feeder, that is, when x = L/2 . In this 
way, distribution of NQ'(x) is approximately symmetrical.  

   

dNQ'(x) For maximum NQ'(x), NQ"(x) =
dx 

= 0 

Hence                
   NQ"(x)  = -6 a2  a4 x + 2  (a2 a3 - a1 a4) = 0 
                

a2 a3 - a1 a4         Or x = 
-a2 a4          

Based on the assumptions embodied in Figure 17, it may be shown that the 
optimum hopper geometry is governed by the divergence angle l and is 
independent of the of the release angle y. Setting x = L/2 and substituting for a1 
to a4 from equation (55), it may be shown that the optimum divergence angle l is 
given by  
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B 1 tan λ = 
2L ---------------------------- 

    
{ 

    2        1    yc   

}

      yc 

[
1 - Ce

-
H

] - 0.5
 

      
1 -

H         

               (55)

Optimum values of λ computed using equation (55) are illustrated in Figures 15 
and 16. In Figure 15, optimum l values are plotted against the volumetric 
efficiency, ηv(L) = 1 + Ce / 2 which applies at the feed end of the hopper. The 
plotted results apply to L/B = 5.0 and for yc/H values ranging from 0 to 0.5. For 
the theoretical special case Of Ce = 1.0 for which ηv(L) = 1.0, the divergence 
angle λ = 0°. For the case when Ce = 0 for which ηv(L) = 0.5, the divergence 
angle λ = 3.85°, this value of λ being the same for all clearance ratios yc/B.  

The influence of the feeder L/B ratio on the optimum values of λ for a range of 
clearance ratios is illustrated in Figure 16. The optimum divergence angle λ for 
uniform draw-down is shown to decrease with increase in L/B ratio, the rate of 
decrease being quite rapid at first but lessening as the L/B ratio increases 
towards the value L/B = 10. As shown, the optimum divergence angle λ 
increases with decrease in clearance ratio. The volumetric efficiency variation is 
the same for both feeders, decreasing from 0.98 at the rear of the feeder to 0.75 
At the feed end.  

 

Figure 15. Optimum Divergence Angle versus Volumetric Efficiency at  
Feed End for a Range of Clearance Ratios  
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Figure 16. Optimum Divergence Angle versus L/B Ratio for a Range  
of Clearance Ratios ηv = 0.75; Ce = 0.5  

5.7 Belt Feeder Example  

Figure 17 shows the volumetric efficiency hv(x), throughput parameter NQ(x) and 
gradient NQ'(x) for two feeder geometries for the case of L/B = 5 and Ce = 0.5. 
The full lines for NQ(x) and NQ'(x) correspond to the optimum divergence angle λ 
= 1.54° and as shown, the gradient NQ'(x) is virtually constant indicating uniform 
draw-down in the hopper.  

For comparison purposes, the performance of a feeder having the same feed 
rate as the optimum feeder but with a larger divergence angle of 3° is also 
presented. The relevant graphs are shown by dotted lines. As shown, the 
gradient NQ'(x) for this case increases toward the feed end which indicates that 
the hopper will draw down preferentially from the front.  

 

Figure 17. Throughput Characteristics of Belt Feeder - ηv = 0.75 Ce = 0.5 
Case 1: Optimum λ= 1.54° Case 2: λ = 3°   

6. DRIVE RESISTANCES - BELT AND APRON FEEDERS  

The general layout of a belt or apron feeder is shown in Figure 18.  

The various resistances to be overcome, which are analysed in Refs.[7,8], are:  

i. Force to shear bulk solid   
ii. Force to overcome skirtplate friction in the hopper zone and in the 

extended zone beyond the hopper   
iii. Force to move belt or apron against support idlers   
iv. Force to elevate the bulk solid   
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Figure 18. Hopper Geometry for Feeder Load Determination  

6.1 Tangential Load   

The forces acting in the feed zone are illustrated diagrammatically in Figure 18. 
The tangential force to shear the material may be computed from  

F = µE Q                               (56)  

where  

µE = Equivalent friction coefficient  

The following friction coefficients have been suggested:  

Reisner: µE = 0.4,                              Jenike: µE = 0.45  

The internal friction coefficient at the surface of the shear plane is normally taken 
to be  

µs = sin δ                           (57)  

Allowing for the diverging wedge shape of the assumed shear zone, a simple, 
empirical expression for the equivalent friction coefficient µE is  

µE = K sin δ                           (58)  

Experience has shown that K = 0.8 gives a satisfactory prediction in most cases.  

However an alternative expression based on the geometry of the feed zone may 
be determined as indicated in Ref.[9]  

   

                      µs cos ψ - sin ψ                       µE = 
cos(θ + ψ)[1 + µs µwi] + sin(θ + ψ)[µs - µwi] 

             (59) 

  

where θ = feeder inclination angle 
  ψ = release angle  
  µs  = friction at shear surface 
  µwi = end wall friction   
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In effect, µwi serves to reduce the load Q acting on the feeder.  

The more conservative approach is to assume that µwi = 0. Hence,  

   

        µs cos ψ - sin ψ         µE = 
cos(θ + ψ) + µs sin(θ + ψ)

             (60)

By way of example, a set of design curves based on equation (60) is shown in 
Figure 19.  

 

Figure 19. Equivalent Friction for Belt and Apron Feeder - ψ =10°  

6.2 Skirtplate Resistance  

Assuming steady flow, the skirtplate resistance is determined for the hopper and 
extended sections (see Figure 18). The pressure distributions for the skirtplate 
sections are assumed to be hydrostatic as illustrated in Figure 20.   

 

Figure 20. Pressure Distributions for Skirtplate Zones  

Neglecting the vertical support Vh and Ve due to the skirtplates, the skirtplate 
resistance is given by  

i. Hopper Section  

yh Fsph = µsp Kv (2 NQ + ρ g B Lh yh) B
                 (61)

ii. Extended Section (Section beyond hopper)  

Fspe = µsph Kv ρ g B Le ye²                (62)  
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where NQ  = Feeder load normal to belt or apron surface = Q cos q  
  ρ = Bulk density  
  yh = Average height of material against skirtplates for hopper section  
  ye = Average height of material against skirtplates for extended section 
  Kv = Ratio of lateral to vertical pressure at skirtplates  
  g = Acceleration due to gravity = 9.81 (m/s²) 
  B = Width between skirtplates 
  µsph = Equivalent skirtplate friction coefficient 
  Le = Length of skirtplates for extended section  

It should be noted that in the hopper zone, the skirtplates are diverging. Hence 
the frictional resistance will be less than in the case of parallel skirts. Referring 
Figure 20, µsph may be estimated from  

   

  µsph - tan λ   µsph = 
1 + µsph tan λ

                          (63)

  

where λ = Half divergence angle of skirtplates
  µsph = Friction coefficient for skirtplates 

The pressure ratio Kv is such that 0.4 < Kv < 1.0. The lower limit may be 
approached for the static case and the upper limit for steady flow. In the case of 
slow feed velocities, as in the case of apron feeders, the value of Kv for flow may 
be in the middle range.  

6.3 Load Slope Resistance  

Fslope = (W + We) sin θ               (64)  

W   = Weight of material in skirtplate zone of hopper 
We = Weight of material in extended skirtplate zone of hopper   

6.4 Belt or Apron Load Resistance   

i. Hopper Section  

Fbh = (NQ + ρ g B L yh ) yh µb             (65)  

ii. Extended Section   
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Fbe = NQ + ρ g B Le ye µb             (66)  

   

Where µb = Idler friction.  

6.5 Empty Belt or Apron Resistance  

Fb = wb LB µb              (67)  

   

Where wb = Belt or apron weight per unit length 
  LB = Total length of belt > 2 (Lh +Le) 

6.6 Force to Accelerate Material onto Belt or Apron   

FA = Qm vb                     (68)  

   

Where Qm = Mass flow rate  
  vb = Belt or apron speed 

It is assumed that  

Qm = ρ B ye vb             (69)  

Usually the force FA is negligible.  

It should be noted that for good performance, belt and apron speeds should be 
kept low. Generally vb ≤ 0.5 m/S.  

6.7 Drive Powers   

The foregoing loads and resistances are determined for the initial and flow 
conditions using the appropriate values of the variables involved. The power is 
computed from  

   

vbP = ( ∑ Resistances) 
η 

                              (70)

where η = efficiency and vb = average belt or apron speed. For start-up, vb may 
be approximated as half the actual speed. For the flow condition, vb will be the 
actual belt or apron speed during running.  
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7. CONDITION FOR NON-SLIP  

The condition for non-slip between the belt and bulk solid under steady motion 
can be determined as follows:  

µB (Qf + WT) ≥ (Ff + Fsp + Fslope + Fa)               (71)  

Where µB = µb cos θ - sin θ                     (72)  

   

µB  = Coefficient of friction between belt or apron and bulk solid 
Qf = Flow surcharge load on shear plane at hopper outlet  
WT = Total weight of bulk material in skirtplate zones  
Ff = Force to shear material at hopper outlet  
Fsp = Skirtplate resistance.  

A more detailed analysis of the condition for non slip is given in Ref.[8] The 
essential relationships are summarised below.   

The general relationship for no slip is shown to be  

   

R sin (øs - ψ) + W sin θ + Fsp + Fa µb = tan øb ≥ 
R cos (øs - ψ) + W cos θ 

                     (73) 

Fsb + W sin θ + Fsp + Fa 

Or 
µb = tan øb ≥ 

Fsb cos (øs - ψ) + W cos θ 
                     (74) 

Where Fsb = µE Q 

7.1 Case When Fa ≈ 0 and End Wall Friction ≈ 0  

In most cases, the belt or apron speed is low enough to render Fa ≈ 0.  

   

R sin (øs - ψ) + W sin θ + Fsp µb = tan øb ≥ 
R cos (øs - ψ) + W cos θ 

                     (75) 

Expressing R in terms of the feeder load Q leads to  

   

Q sin (øs - ψ) + β (W sin θ + Fsp) µb ≥ 
Q cos (øs - ψ) + β W cos θ 

                     (76)
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where β = cos (øs - θ - ψ)                                 (77)
  θ = feeder slope  
  ψ = release angle  
  øs = friction angle at shear surface  

Skirtplate resistance  

Fsp = Fsph + Fspe  

  

yh ye  Fsp = Kv cos θ [µsph B
(2 Q + W) + µsp We B

]                               (78) 

  

where W = Weight of bulk solid in shear zone of hopper 
  We = Weight of bulk solid in extended zone   

Generalised Equation for µb   

Let                 CQ = W/Q                   (79) 
 
and                CQe = We/Q                  (80)  

From Figure 20, for a small clearance yc, yh/B = ye/2B 
Hence, equation (78) becomes  

   

ye sin (øs - ψ) + β {CQ sin θ + Kv cos θ
B

[0.5 msph (2 + CQ) + µsp CQe]} 

------------------------------------------------------------------------- 
µb = 

cos (øs - ψ) + β CQ cos θ 

           (81) 

7.2 NUMERICAL EXAMPLE   

Figure 21 illustrates the minimum belt /apron friction angle as a function of 
release angle to prevent slip for the case when   

L yc  

B 
= 5; 

B 
≈ 0; δ = 50°; µs = sin δ = 0.76; øs = tan-1 0.76 = 37°; C = Ce = 0.05 

The graphs have been plotted for the feeder slope angles, -10°, 0°, and 10°.   

   

In this case, ηv(L) = (1 + Ce) and Ce = 1 - 0.5 H  
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As indicated, the minimum belt friction angle øb is less sensitive to changes in 
feeder slope, but is more sensitive to the release angle ψ, decreasing with 
increase in ψ as indicated.  

 

Figure 21. Minimum Belt/Apron Friction Angle to Prevent Slip 
L/B = 5; Yc/B = 0.1; δ = 50°; µs = sin δ = 0.76; øs = tan-1 0.76 = 37°; CQ = CQe = 

0.05 
Optimum λ = 1.54°; Ce = 0.5   

8. CONTROLLING FEEDER LOADS AND POWER  

The loads on feeders and the torque during start-up may be controlled by 
ensuring that an arched stress field fully or partially exists in the hopper just prior 
to starting. This may be achieved by such procedures as:  

• Cushioning in the hopper, that is leaving a quantity of material in the 
hopper as buffer storage.   

• Raising the feeder up against the hopper bottom during filling and then 
cowering the feeder to the operating condition prior to starting. In this 
way an arched stress field may be partially established.  

• Starting the feeder under the empty hopper before filling commences.  
• Using transverse, triangular-shaped inserts  

8.1 Load Cushioning  

The high initial loads which may act on feeders are a matter of some concern 
and, where possible, steps should be taken to reduce the magnitude of these 
loads. Bearing in mind the need to maintain a fully active hopper outlet, it is 
possible to control or limit the load on the feeder by always retaining a cushion of 
material in the hopper. The advantage of this practice with respect to feeder 
loads is illustrated in Figure 22.  

From a practical point of view, the practice of maintaining a cushion of material in 
the hopper is most desirable in order to protect the hopper surface from impact 
damage during filling. However there is a further advantage; the material left in 
the hopper as a cushion, having previously been in motion, will preserve the 
arched stress field. This will provide a surcharge load on the arch field, but the 
load at the outlet will be of lower order than if the bin is totally filled from the 
empty condition. From Figure 22, the substantial reduction in the initial feeder 
load as the cushion head increases is clearly evident.  
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Figure 22. Cushioning in the Hopper to Control Feeder Loads  

8.2 Raising and lowering the Feeder  

It needs to be noted that the choice of mounting arrangement for a feeder can 
assist in generating a preliminary arched stress field near the outlet sufficient to 
moderate both the initial feeder load and starting power. In the case of vibratory 
feeders, for example, it is common to suspend the feeders on springs supported 
off the bin structure as illustrated in Figure 23. The initial deflection of the springs 
during filling of the bin can assist in generating an arched pressure field near the 
outlet and reduce the initial load. For a belt feeder, it may be thought useful to 
incorporate a jacking arrangement to lift the feeder up against the bottom of the 
hopper during filling. Before starting, the feeder is released to its operating 
position sufficient to cause some movement of the bulk solid in order to generate 
a cushion effect. The use of a slide gate or valve above the feeder is another way 
of limiting the initial load and power. The gate is closed during filling and opened 
after the feeder has been started.  

For 'emergency' purposes, the provision of jacking screws as illustrated in Figure 
23 can be used to lower the feeder should a peaked stress field be established 
on filling and there is insufficient power to start the feeder. Lowering the feeder 
can induce, either fully or partially, an arched stress field and allow the feeder to 
be started.  

 

Figure 23. Use of Jacking Screws to Lower the Feeder   

8.3 Starting the Feeder Before Filling Commences  

Starting the feeder under the empty hopper before filling commences can also 
allow the arched stress field to be established. Once the hopper is filled, the 
feeder may be stopped if desired and the filling process continued.  

8.4 Use of Transverse Inserts  
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In the case of feeders employing long opening slots, the use of transverse inserts 
can assist in the reducing the initial load, as well as promoting uniform draw of 
bulk solid from the hopper along the length of the feeder. The used of transverse 
inserts is illustrated in Figure 24. A difficulty associated with long narrow slots is 
the limitation in release angles which can give rise to belt slip.  

 

Figure 24. Use of Transverse Inserts to Control both Load and Flow Pattern  

9. SURCHARGE LOAD ON FEEDER - INITIAL FILLING CONDITION   

The computation of the initial vertical load acting on a feeder requires a 
knowledge of the surcharge pressure ps acting at the transition of the feed 
hopper. It is to be noted the flow load acting on a feeder is independent of the 
surcharge head. The determination of the initial surcharge pressure ps depends 
on the type of storage system employed. The following cases are considered:  

9.1 Mass-Flow and Expanded Flow Bins  

Referring to Figure 25, the surcharge head is given by the Janssen equation:  

   

    R     hc = 
Kj tan ø 

[1 - e-Kj tanø H/R] + hs e-Kj tanø H/R           (82)

The corresponding pressure pc is  

pc =  γ hc           (83)  

where R = 'Hydraulic' Radius defined as  

   

      D       R =
2 (1 + mc)

              (84)

  

mc 0 for long rectangular cylinder  
mc 1 for square or circular cylinder  
H Height of bulk solid in contact with cylinder walls 
Kj pn/pv for cylinder. Normally Kj = 0.4 
ø Wall friction angle for cylinder  
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Figure 25. Mass-Flow and Expanded-Flow Bins  

The effective surcharge head is given by  

   

    Hs     hs = ms + 2
                   (85)

  

where Hs = Surcharge head  
  ms = 1 for conical surcharge  
  ms = 0 for triangular surcharge 

9.2 Gravity Reclaim Stockpile  

The use of mass-flow reclaim hoppers and feeders under stockpiles is illustrated 
in Figure 26. The initial load Qi on the reclaim feeder is dependent on the 
effective surcharge head, while the flow load Qf is independent of the head as 
illustrated.   

The determination of surcharge head and pressure in the case of stockpiles is 
somewhat uncertain owing to the significant variations that can occur in the 
consolidation conditions existing within the stored bulk solid. The state of 
consolidation of the bulk solid is influenced by such factors as   

• Stockpile management and loading history   
• Loading and unloading cycle times and length of undisturbed storage 

time   
• Variations in moisture content   
• Degree of segregation   
• Variations in the quality of bulk solid over long periods of time   
• Compaction effects of heavy mobile equipment that may operate on the 

surface of the stockpile   
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Figure 26: Gravity Reclaim Stockpile  

As a result of recent research and field studies, procedures are recommended for 
the following two cases:   

a. Case 1 - Freshly Formed or Uniformly Consolidated Stockpile in 
which withdrawal occurs at regular intervals.  

hc = H                       (86)  

That is the effective head is equal to the actual head. This is the most 
conservative solution.  

In some cases, a less conservative solution may be applied through the 
use of the Rankine pressure or head. That is  

hc = H cos ør                  (87)  

where ør = Angle of repose  

b. Case 2 - Well Consolidated Stockpile in which the rathole above the 
feeder is well formed and stable.   

In this case the rathole serves as a pseudo-bin and the effective head 
may be estimated using the Janssen equation following the procedures 
described in Section 9.1 for an expanded flow bin. In this case the 
cylinder diameter is the actual rathole diameter Df, and the wall friction 
angle becomes the static angle of internal friction øt. In reality, the shape 
of ratholes is not cylindrical so the Janssen approach is an 
approximation.   

10. FEEDER LOADS FOR FUNNEL-FLOW  

In the case of feeders under funnel-flow bins, the load Q on the feeder will be the 
total effective head of bulk solid computed on the basis of Janssen or the 
'hydrostatic' head as may be relevant. The existence of a 'flow stress field' 
situation as applies under mass-flow does not apply in the funnel-flow case.  

11. FEEDING ONTO BELT CONVEYORS  

The efficient operation of belt conveyors depends on a many factors, not the 
least of which is effective loading or feeding of bulk solids onto the belts at the 
feed or intake end. The fact that belt or apron feeders are normally limited to 
speeds of up to 0.5 m/s, the bulk solid has to be accelerated to enter the 
conveyor belt at a speed matching, as close as possible, that of the belt. Two 
methods of achieving this are possible  

• the use of accelerator belts  
• employing gravity to accelerate the bulk solid in association with a feed 

chute  
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Accelerator belts are the more costly of the above two methods and are subject 
to significant belt wear. Gravity feed chutes, which require the necessary head 
room to accelerate the bulk solid to belt speed, are the better option. The 
objectives of chute design are to ensure streamlined flow without spillage and 
with minimum chute and belt wear. This, in turn, requires the correct choice of 
lining materials to suit the bulk solid and chute geometry.  

11.1 Aspects of Chute Design   

a. Free Fall of Bulk Solid  

Figure 28 illustrates the application of a gravity feed chute to direct the 
discharge from a belt or apron feeder to a conveyor belt. The bulk solid is 
assumed to fall vertically through a height 'h' before making contact with 
the curved section of the feed chute. Since, normally, the belt or apron 
speed vf ≤ 0.5 m/s, the velocity of impact vi with the curved section of the 
feed chute will be, essentially, in the vertical direction.  

For the free fall section, the velocity vi may be estimated from  

   

 _________vi = 
√ vfo² + 2 g h

                     (88)

Equation (88) neglects air resistance, which in the case of a chute, is 
likely to be small. If air resistance is taken into account, the relationship 
between height of drop and velocity vi (Figure 28) is,  

   

  vfo    
  

1 -
v∞   

v∞² ------- vi - vo  

g vi g 
h = 

  

loge [

1 -
v∞

] - (

  

) v∞                   (89)

  

where v∞ = terminal velocity  
  vfo = vertical component of velocity of bulk solid discharging from feeder  

  vi 
= velocity corresponding to drop height 'h' at point of impact with 
chute.   
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Figure 28. Feed Chute Configuration   

b. Flow of Bulk Solid around Curved Chute  

If the curved section of the chute is of constant radius R, the velocity at 
any location θ may be computed from the equation given below (Ref.[9]),  

   

  ________________________________________________________ 
2 g R 6 µe R g  

v = 
√ 

4 µe² + 1 
[sinθ (1 - 2 µe²) + 3 µe cosθ] + e-2 µ

e
 θ [vj² - 4 µe² + 1

]                (90) 

where µe = equivalent friction which takes into account the friction 
coefficient between the bulk solid and the chute surface and the chute 
cross-section.  

The objectives are   

• to match the horizontal component of the exit velocity vex as 
close as possible to the belt speed   

• to reduce the vertical component of the exit velocity vey so that 
abrasive wear due to impact may be kept within acceptable 
limits.   

The abrasive wear of the belt may be estimated as follows:   

Impact pressure pvi = ρ vey² (kPa)  

   

where ρ  = bulk density, t/m³ 
  vey = vertical component of the exit velocity, m/s

Abrasive wear                  Wa = µb ρ vey² (vb - vex)                            (91)  

Where          µb = friction coefficient between the bulk solid and conveyor 
belt  
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Apart from minimising belt wear, it is also important to minimise the wear 
of the chute lining surfaces. As illustrated in Figure 28, the curved chute 
is divided into two zones, the impact region where the low impact angles 
require the use of a hard lining surface, and the other, the streamlined 
flow region where low friction and low abrasive wear is a necessity.  

11.2 Example  

The following example is considered:  

Referring to Figure 28, Qm = 1000 t/h, h = 1.0 m, R = 3.0 m, ρ = 1 t/m³. It is 
assumed that µe = 0.5  

Based on a terminal velocity v∞ = 30 m/s and zero initial velocity, vfo = 0, the 
impact velocity is estimated to be, vi = 4.4 m/s. Utilising equation (90), the 
variation in velocity 'v' around the chute may be computed as well as the velocity 
components vex and vey. These velocities are plotted, together with the chute 
profile in Figure 29.  

 

Figure 29. Curved Chute Performance 
R = 3 m; vi = 4.4 m/s ; µe = 0.5; Qm= 1000 t/h; ρ = 1 t/m³  

The maximum velocities are  

   

       vmax = 5.56 m/s at θ = 40°
       vx,max = 4.43 m/s at θ = 60°
       vy,max = 5.06 m/s at θ = 20°

Of particular interest is vex = vx,max = 4.43 m/s for θ = 60°, the corresponding 
values of x and y being xe = 1.5 m and ye = 2.6 m. The total height of drop = h + 
ye = 3.6 m  

Also, the corresponding value of vy = vey = 2.56 m/s. 
Assuming the belt speed is vb = 4.5 m/s and µb = 0.6   

From equation (89), the abrasive wear factor Wa = 0.6 x 1.0 x 2.56² x (4.5 - 4.43) 
= 0.28 kpa m/s. Note that it is not necessary to choose the condition for 
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maximum vex. Lower values of Wa may be obtained by choosing other values of 
vex and vey.  

It needs to be noted that, for a given head height, best performance is generally 
obtained by selecting a large radius 'R' relative to the height 'h'.   

12. CONCLUDING REMARKS  

The concepts of feeder design in relation to loading of bulk solids onto belt 
conveyors has been presented. The need for feeders and mass-flow hoppers to 
be designed as an integral unit to promote uniform feed has been emphasised 
and the general expressions for feeder loads have been presented. 
Recommendations for optimising the geometry of the hopper and feeder 
interface have been given.  

Taking account of the hopper and feeder geometry, together with the properties 
of the bulk solid, the procedures for determining the tangential driving loads and 
corresponding drive powers have been discussed. The significance of the arched 
stress field in the hopper for controlling feeder loads has been explained. The 
estimation of loads on feeders used in conjunction with funnel-flow, expanded- 
flow bins and gravity reclaim stockpiles has been outlined. The design of feed 
chutes for directing the flow of bulk solids from the feeder discharge onto 
conveyor belts is briefly reviewed.  
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